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Abstract 

The applicability of shearography techniques for non-destructive evaluation in two 
unique application areas is examined. In the first application, shearography is used to 
evaluate the quality of adhesive bonds holding lead tiles to the B.4T g a m a  ray mask for 
the NASA Swift program. Using a vibration excitation, the more poorly bonded tiles are 
readily identifiable in the shearography image. A quantitative analysis is presented that 
compares the shearography results with a destructive pull test measuring the force at 
bond failure. 

The second application is to evaluate the bonding between the skin and core of a 
honeycomb structure with a specular (mirror-like) surface. In standard shearography 
techniques, the object under test must have a diffuse surface to generate the speckle 
patterns in laser light, which are then sheared. A novel configuration using the specular 
surface as a mirror to image speckles from a diffuser is presented, opening up the use of 
shearography to a new class of objects that could not have been examined with the 
traditional approach. This new technique readily identifies large scale bond failures in 
the panel, demonstrating the validity of this approach. 
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Executive Summary 

In this report we examine the applicability of shearography techniques for non- 
destructive inspection and evaluation in two unique application areas. In the first 
application, shearography is used to evaluate the quality of adhesive bonds holding lead 
tiles to the BAT gamma ray mask for the NASA Swift program. By exciting the mask 
with a vibration, the more poorly bonded tiles can be distinguished by their greater 
displacement response, which is readily identifiable in the shearography image. A 
quantitative analysis is presented that compares the shearography results with a 
destructive pull test measuring the force at bond failure. Generaliy speaking, the resuits 
show good agreement. Further investigation would be useful to optimize certain test 
parameters such as vibration frequency and amplitude. 

The second application is to evaluate the bonding between the skin and core of a 
honeycomb structure with a specular (mirror-like) surface. In standard shearography 
techniques, the object under test must have a diffuse surface to generate the speckle 
patterns in laser light, which are then sheared. A novel configuration using the specular 
surface as a mirror to image speckles from a diffuser is presented, opening up the use of 
shearography to a new class of objects that could not have been examined with the 
traditional approach. This new technique readily identifies large scale bond failures in 
the panel, demonstrating the validity of this approach. 

For the particular panel examined here, some scaling issues should be examined further 
to resolve the measurement scale down to the very small size of the core cells. In 
addition, further development should be undertaken to determine the general applicability 
of the new approach and to establish a firm quantitative foundation. 
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1. Introduction 

The goal of this project is to evaluate the applicability of shearography for nondestructive 
inspection and evaluation (NDI / NDE) of certain mission critical components. This 
work was performed as part of a Cooperative Agreement with the NASA Goddard Space 
Flight Center (GSFC), grant number NCC5-508. Two potential application areas were 
identified: 

1. For tiles on the Swift BAT gamma ray mask, to determine whether poorly- 
bonded tiles could be distinguished from well-bonded tiles. 
2. To determine whether shearography could identify any bonding failure 
between the skin and the core of specular-surface honeycomb structures. 

The Penn State University Applied Research Lab (PSU/AFtL) provided the shearography 
system and labor while the GSFC provided the test samples and consultation regarding 
sample construction and appropriate test environments. 

Shearography, a form of speckle shear interferometry, is a robust yet sensitive technique 
for NDI / NDE that has been demonstrated to be effective in the field environment out of 
the laboratory. [ 11 Unlike holographic methods, which measure absolute surface 
displacements and are very sensitive to environmental disturbances, shearography is a 
differential technique that measures changes in surface gradient due to applied excitation 
stress. As such, it provides a common mode rejection that makes it relatively insensitive 
to environmental conditions. While shearography has been around for some time, the 
phase shifting technique used in the PSU/ARL system provides greatly improved 
visualization of results by computing the speckle phase instead of merely using the 
speckle image, as in earlier methods. 121 

The two application areas require different methods of generating the excitation stress. In 
the case of the BAT mask tiles, the adhesive holding the tile is somewhat flexible, and if 

* we apply a low amplitude vibration in the plane of the mask, the tile tends to tilt back and 
forth slightly. The amplitude of this motion depends inversely on how well the tile is 
bonded to the surface of the mask. By taking two snapshots, 180” apart at the extremes of 
the tile vibration cycle, the shearography system measures the amplitude of motion as the 
change in slope of the tile surface. 

For honeycomb panels shearography has been demonstrated to give good results in 
identifying bonding failures between the core and skin under vacuum, pressure, and even 
thermal excitation. At the cell walls of the honeycomb core, where the skin is attached, 
the surface is constrained, and there is no change in the surface slope when the excitation 
is applied. However, at the interior of the cells there is nothing holdmg the skin, so the 
surface slope is free to change under the excitation, and, when the differential surface 
gradient is dispiayed, it wiii appear different from tne constrained areas. E $e structure 
is sound, the distinct honeycomb pattern of the core will appear in the display, and any 
bonding failure will be readily apparent as an interruption of that pattern. In the present 
application, however, the challenge is that the panels have a specular (mirror-like) finish 
and do not produce the speckle patterns needed for shearography. (Note that the terms 
“specular” and “speckle” have an unfortunate phonetic similarity which can often be the 

, I  
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source of some confusion.) In this case the speckles can be generated by illuminating 
some other diffuse surface with laser light and then use the specular surface as a mirror to 
view them. In principle, this configuration should produce a display very similar to that 
obtained from a diffuse surface honeycomb panel. 

In Section 2 below, we review the principles of shearography and describe the basic 
PSU/ARL system configuration and operation. In Sections 3 and 4 we discuss in detail 
the two application areas, the BAT mask tiles and the specular honeycomb panel, 
respectively. These sections include the experimental set up for each case and results 
obtained. Finally in Section 5 we present our conclusions and recommendations. 

2. Technical Background 

Shearography makes use of the “subjective” speckle pattern [3] that is produced through 
random interference when the rough surface of an object is illuminated by coherent laser 
light and imaged through a lens. The speckle image is “sheared” by splitting the wave 
front into two parts which are then recombined at the image plane with a small transverse 
shift between them. The effect is that each point in the image plane is the image of two 
different scattering points on the rough surface separated by the shear vector (6x, 6y). 
The speckle intensity at the image point depends on the interference between these two 
scattering points. The speckle pattern pmduced is highly sensitive to differential out-of- 
plane displacements over the shear distance but relatively insensitive to common mode 
displacements. As a result, shearography provides a technique for measuring small 
changes in surface slope that is robust enough to operate outside the laboratory 
environment. 

The PSU/ARL shearography system is illustrated in Figure 1 below. It uses a Coherent 
DPSS-532 diode-pumped Nd:YAG continuous wave (CW) laser producing 500 mW 
output at 532 nm as the illumination source with a Pulnix TM-1040 Progressive Scanning 
High Resolution camera (960 x 640 pixels) interfaced through a Bitflow RoadRunner 
frame grabber to record the speckle images. Speckle shearing is produced using a 
Michelson interferometer arrangement with one of the mirrors tilted, and the shear 
distance is set by adjusting the degree of tilt. A 486-based lunchbox computer is used to 
acquire the camera images, process the data, and display the results as well as for overall 
control and synchronization of the various subsystems. 

Generally speaking, nondestructive evaluation is done by observing the changes when 
some small excitation is applied to the object under test. Various types of excitation, 
such as pressure, heat, force, vibration, and others, may be used depending on the 
particular application; Withshearography; the-changes in the observed speckle .pattern .-_ 
infer changes in the surface gradient component in the direction of the shear 
displacement. Two speckle images, representing the reference and excited states, can be 
subtracted to produce a visualization of the gradient changes. However, better immunity 
to variations in surface reflectivity and other noise effects can be obtained by first 
obtaining the speckle phase at each pixel for both the reference and the excitation 
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conditions, and then computing the phase difference pixel by pixel. This produces a 
much clearer visualization image, and the result is a more quantitative representation of 
the change in gradient. 

SCENE 

Figure 1. Basic PSU/ARL shearography configuration, based on a Michelson 
interferometer with phase stepping. The piezo-electric actuator (PZT) controls the 
stepping of mirror 1, while the shear distance is determined by the tilt in mirror 2. The 
imaging lens, located between the beam splitter cube and the CCD array, is not shown. 

In the PSU/ARL shearography system, speckle phase is computed using a highly 
accurate, four-step, phase-stepping approach in which four separate images are taken at 
different interferometric path differences, in quarter wavelength increments. Phase 
stepping is performed by moving one of the interferometer mirrors (mirror 1 in Figure 1) 
using a piezo-electric actuator controlled by a waveform generator board in the computer. 
The intensity at pixel (x,y) in each of the four images can be represented by 

1, (x,  y) = a(x, u> -t W, y> COS[W, YII 

l& ,Y)  = a(x,y) + 4x,Y)cos[w,Y)+al 

I ,  ( x ,  Y 1 = 4 x 9  Y 1 + b(x, Y) c&(x, Y) +%I 
I ,  (x, yJ=c?(k; y )  + b(%-y) cOs[@(x, y) P 372$ f1 j - - , ...._- ..- !~-,. . . . 3- / I  ..*e I . - - % I  .-I <*_. 

where p(x,y) is the speckle phase, which is lrectly related to differential optical path 
length through the two scattering points. The bias intensity, a(x,y), and fringe modulation 
intensity, b(x,y), account for variations in illumination, surface reflectivity, and other 
effects. Solving for the speckle phase, the a(x,y) and b(x,y) terms drop out of the 
solution, and we get 
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If the shearing distance is small and the illumination and viewing directions are nearly 
normal to the object surface, the change in speckle phase can be approximately related to 
the differential displacement by 

A g ( x . Y ) = ~ , ( x , Y ) - ~ , ( x , Y )  
4z (3) 
A = - (sz, - sz, ) 

where qe(x,y) a d  pr(x,y> are the speckle phase for the excitation and reference 
conditions, respectively, computed using Equation 1. The 6z, and 6z, terms represent the 
out-of-plane differences between the two points on the object surface that image to pixel 
(x,y), for the excitation and reference conditions, respectively. It should be noted that the 
speckle phase as computed by Equation 1 ranges from 0 to 27t and may have 27c jumps, 
giving the resulting difference image a fringe-like appearance. If a true quantitative 
measurement is desired, it may be necessary to do some post-processing with a phase 
unwrap algorithm. 

3. BAT Mask Tile Adhesive Bonding 

The first application area to be evaluated involves the quality of the adhesive bonds that 
attach the tiles to the Swift BAT mask. The goal is to determine whether shearography 
methods can distinguish the poorly bonded tiles from those that are well bonded. The 
mask contains about 52,000 lead tiles arranged in a pseudo-random pattern, and each tile 
is approximately 5 mm square, 1 mm thick, and weighs about 0.25 grams. The excitation 
stress is a low amplitude vibration in the plane of the mask surface. The adhesive used to 
bond the tiles to the mask surface is somewhat flexible, and the combination of tile and 
adhesive can be roughly modeled as a mass on a spring that would respond to the 
vibration by swaying back and forth, as illustrated in Figure 2 below. The quality of the 
bond relates to the stiffness of the spring, which in turn determines the amplitude of 
motion. Based on the tile mass and a very rough estimate of the adhesive spring constant, 
the optimal excitation frequency was expected to be in the range of a few tens to a few 
hundreds of Hertz. 

Good results were obtained with an excitation frequency of 180 Hz, although the exact 
value did not appear to be critical. The “reference” and “excitation” conditions were 
taken to be at 120” and -60” in the vibration cycle, representing the points where the tiles 
had the greatest tilt. These phase angles are with respect to the output signal of the 

“spring” combination. (Note that there are two unrelated meanings of the word phase 
that we are using: the speckle phase and the phase of the vibration cycle.) A set of four 
phase-stepped speckle images is captured both at the “reference” and at the “excitation” 
by strobing the laser illumination at these points in the vibration cycle. A strobe duty 
cycle of 25% is a good compromise between maximizing light energy to the camera and 

~ ..”Le 1- waveform generat‘dr kdcompensate for any phase shift due to the shaker and the tiie- li. P&.-, . 
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not blurring the speckle images. The speckle phase maps for each condition are then 
computed, and the absolute difference between the two shows the amplitude of motion at 
each tile. 

T-i 7 
“Reference” “ Excitation ” 

Figure 2. BAT mask tiles under vibration excitation. The “reference” and ”excitation” 
conditions are taken to be two points in the vibration cycle, 180” apart, which give the 
extremes of tile tilt. 

The test configuration is illustrated in Figure 3. Each image is captured with the camera 
operating in time-integration mode over a number of laser strobe pulses, which are 
synchronized with the desired vibration phase angle, reference or excitation. An 
integration time of 160 msec with a vibration excitation of 180 Hz provides for 
integration over 28 to 29 strobe pulses. Since the aperture of the camera lens must be 
stopped down to f/16 to get a large enough speckle size. this allows sufficient light to be 
accumulated for good speckle images. The strobe is generated by gating the CW laser 
using an acoustic-optic modulator (AOM) to direct the beam through a pin hole and onto 
the BAT mask. The AOM is controlled through a PC Instruments PCI-3 12 dual channel 
waveform generator board in the computer, which is also used to produce the vibration 
signal. 

It has been assumed here that the motion of a tile under vibration is regular in the steady 
state so that its displacement is always the same at any particular phase angle of the 
vibration cycle. If this were not the case the speckles would be decorrelated over the set 
of strobe pulses and would tend to be smeared out. This assumption has been confirmed. 
(It should be noted that in cases where this assumption does not hold, the smeared 
speckles might provide an alternate method for identification of poorly bonded tiles.) 

The vibration signal is a cosine function produced by the waveform generator board and 
coupled through an external power amplifier to a mechanical shaker, which drives the 
vibration of the BAT mask. This arrangement provides for synchronization with the 
acousto-optic modulator and the camera as well as allowing for the selection of all the 
critical parameters through the computer interface, including the frequency and amplitude 

. * -..n _ < , -  - ..e-. . .“ -“ I*-%% 
, .  2- A& of vibration and the strobe phase and dwell-time: 1 I .-. .. 
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BAT 
Mask 

Acousto-Optic 

Shak 

Figure 3. BAT mask test configuration. The shaker vibrates the BAT mask assembly 
while the acoustic-optic modulator is used to create a strobe effect with the laser beam by 
directing it through the pinhole and onto the mask at the appropriate point in the vibration 
cycle. 

The experimental set up is shown in Figure 4. The BAT mask and shaker (the red and 
white object) are at the back toward the right side. The camera and interferometer are at 
the back on the left side. The acousto-optic modulator is at the right front, and the 
pinhole and lens are between the acousto-optic modulator and the BAT mask. The laser 
is not shown. A close up of the BAT mask, illuminated by the laser, with the shaker to 
its right is shown in Figure 5.  To provide a reasonable light level for the camera the laser 
illumination area was chosen to be about 15 cm in diameter. It should be noted that 
gating with a CW laser is a rather inefficient since the duty cycle only 25%. The 
acoustic-optic modulator also introduces inefficiencies in that only one of the diffraction 
lobes can be utilized. A possible alternative would be to use a pulsed laser whose pulse 
could be externally controlled by the computer. 
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Figure 4. BAT mask experimental set up. The BAT mask is in the back with the shaker 
(the red and white object) to the right of it. The camera and interferometer are in the 
back at the left, and the acousto-optic modulator is at the left front. The pinhole and lens 
are between the acousto-optic modulator and the BAT mask. The laser is not shown 
here. 

~ , , . >. . ,.: ..: - , . . . 
J.. . .  . 
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Figure 5. Portion of the BAT mask under test, illuminated by laser light and attached to 
a mechanical shaker. The tiles appear as a pseudo-random pattern of small gray squares. 
The orange spots are patches of adhesive where the tiles have fallen off. 

Figure 6 shows a sheared white light image of the BAT mask as seen through the 
interferometer by the camera. The horizontal shear displacement, which is about 1 mm 
(20% of the tile size), makes the image looks blurred. Figure 7 is a sheared image 
captured in laser light, illustrating the speckle inherent in such an image. Also apparent 
in this image is the limit of laser illumination, the roughly circular area in the right two- 
thirds of the picture, where good results can be obtained. This particular image 
corresponds to the first phase step for the reference condition (at 120" in the vibration 
cycle). Three other speckle phase step images, which are not shown, are also taken for 
the reference condition. These would look the same as the first image but are actually 
quite different in the speckle pattern detail. These four images are then used to compute 
a speckle phse  i ~ z p  fcx the referewe c~-i;&tic;n, which is show:: i:: Figxe 8. Notice that-.,*- .__ .. - ~ ~ 

in the phase map, individual tiles are not seen, indicating that effects due to variations in 
illumination and reflectivity across the surface are removed when the speckle phase is 
computed. 
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Figure 6. White light image of the BAT mask as seen through the interferometer by the 
camera. The image is sheared horizontally by about 1 mm making it appear blurred. 

The phase map for the excitation condition (at -60 degrees in the vibration cycle) would 
appear very similar to the one in Figure 8 for the reference; however, they are again quite 
different in the speckle details. The differential displacement, which is shown in Figure 
9, is obtained by taking the absolute difference, pixel by pixel, of the reference and 
excitation speckle maps. The tiles with the greatest range of motion are readily apparent 
against the almost uniform dark background in this figure. Note that the region with the 
dark background is the area where there is sufficient illumination. Dark areas, with 
differential displacement close to zero, represent those parts of the mask where there is 
no change in the phase map, which implies no (or very little) change in the surface slope. 
These may be areas with no tiles or with tiles that are very well bonded. In the outer 
portion of the figure (the area with the speckle background), the illumination is not strong 
enough to produce a good phase map, and the speckle there is useless noise. 

The figures described here were obtained at a vibration frequency of 180 Hz. It was 
anticipated that tiles with di€ferent quality bondin@nightTespond differentiy to different ..- 
excitation frequencies. We note, however, that results appeared fairly uniform over a 
range of frequencies, and no strongly resonant features were apparent. This might be 
because the emphasis during testing was on visual identification of loose tiles (see the 
discussion below on the pull test) or because the test did not cover a broad enough range 
of frequencies. 

# ,-t. I )  -1.. a .  A .  , -., .*-A. 
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Figure 7. Typical sheared image of the mask acquired under laser light. This particular 
image is for the reference condition (at 120 degrees in the vibration cycle) and is the first 
in the series of four phase-stepped images for that condition. All the images of this type 
appear to be identical but are actually quite different in the speckle pattern details. 

Generally speaking, the vibration amplitude seemed to be more critical than the 
frequency. For good identification the amplitude must be set low enough that no motion 
appears in either the well bonded tiles or the background structure to which the tiles are 
attached. This allows the poorly bonded tiles to clearly stand out in the differential 
displacement image. As a practical matter the amplitude is not well regulated by the 
voltage output from the waveform generator because of variation in the frequency 
response of the shaker. However, a reasonable adjustment can be obtained by turning up 
the amplitude until motion is seen throughout the whole imaged area, including the 
background structure, and then backing off. 

Litr,%-. -, - In many inspection applications, shearography is used to visually identify whether or not 
the object has failed,"Zd311aof the poorly bonded tiIes Sf%iid out pretty cieariy in Figure 
9. In order to put the results on a more quantitative basis, a pull test was performed on a 
number of tiles for comparison with the shearography results. To assure a straight pull, a 
flat head nail was attached to the tiles with super glue as a pull mechanism. As each tile 
was pulled to failure, the force was measured with a load cell and automatically stored on 
computer for analysis. The test set up is shown in Figure 10. 

% *---- - 
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Figure 8. Typical speckle phase map computed from the four phase-stepped images. 
This is for the reference condition (120 degrees in the vibration cycle), but the phase map 
for the excitation condition has the same general appearance. 

. .  .... L........ . . . . . . . .  . . . . .  . . .*;:.." .il . . . . . . . . . . . .  
<* .? ,i .i %..,>- . . . . . . . . . . . .  . .  .... . .  , . .  
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Figure 9. Diffemtial displacement, computed by taking the difference between the 
ref-= and excitation speckle phase maps (120 and -60 degrees in the vibration cycle, 
respectively). The tiles that have the greatest range of motion stand out against the 
relatively uniform dark background. The vibration frequency is 180 Hz. 

i.;,. ' %,.. . . . . .  
~ ' . ,  . ..> . .  . ,.. . - .  . 

I .  . -  
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Figure 10. BAT Mask tile pull test set up. 

A scatter graph of pull force versus the shearography differential displacement, where 
each point represents a tile, is shown in Figure 11. The differential displacement was 
computed from the gray scale image of Figure 9 by averaging over an 1 1 x 11 block of 
pixels at the center of each tile. A nearly inverse relationship is apparent in the graph. 
The graph of inverse differential displacement (bottom of Figure 11) then becomes 
roughly linear, although the points spread out at the upper end because the displacement 
becomes small there and random error is accentuated in the inverse. A regression 
analysis gives a linear fit of the form y = m x + b with m = 0.223 and b = 0.185, where x 
is the inverse differential displacement and y is the pull test result in pounds. The 
standard errors of m and b are 0.0226 and 0.122, respectively, and the coefficient of 
determination, R2, is 0.673. It is anticipated that increasing the vibration amplitude 
would generally increase the base level differential displacement of all the tiles, resulting 
in a tighter linear fit. 

. .  . 
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Figure 11. Pull test results compared to the shearography differential displacement 
results of Figure 9, averaged over the center of each tile. The bottom plot uses inverse 
differential displacement, which results in a roughly linear relationship with pull force. 
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4. Specular Surface Honeycomb Panel 

As noted earlier, shearography has been demonstrated to give good results with diffuse 
surface honeycomb panels in identifying bonding failures between the core and skin. 
Vacuum, pressure, and thermal excitation have been used successfully. At the cell walls 
of the honeycomb core, where .the skin is attached, the surface is constrained, and no 
change in slope can occur in response to the excitation. At the interior of the cells, 
however, the surface is free to respond and will appear different in the &splay of 
differential surface gradient. With a well bonded structure, the distinct honeycomb 
pattern of the core stands out in the display, and any bonding failure is readily apparent as 
an interruption of that pattern. In the presefit app!icztiorr, however, the primary challenge 
appeared to be that the panels have a specular surface and do not produce the speckle 
patterns needed for shearography. The approach we used was to generate the speckles by 
illuminating some other diffuse surface with laser light and then use the specular surface 
as a mirror to view them. In principle, this configuration should produce a display very 
similar to that obtained from a diffuse surface honeycomb panel. 

The most appropriate excitation appears to be a slight pressure applied from inside the 
honeycomb core. The core has a system of holes that allow the pressure to equalize over 
the interior cells; however, all external holes must be sealed. A vacuum excitation from 
outside the panel was considered but appeared to be impractical because the specular 
surface was not supposed to be touched and a special vacuum chamber would need to be 
constructed to fit the panel and seal at the edges. In addtion, the sample panel was in 
rather poor condition and would have been difficult to seal up this way. 

Honeycomb Panel with Specular Surface 

960x640 
pixels 

Ground Glass 
Diffuser 

Interferometer 
A 

irror 

Figure 12. Specular surface honeycomb panel test configuration. The speckle is 
generated by passing the laser light through the ground glass diffuser and imaged using 
the specular surface as a mirror. 
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The experimental configuration is illustrated in Figure 12. The speckles are generated by 
expanding the laser beam and passing it through a ground glass diffuser. The diffuser is 
then imaged through the specular surface, using it as a mirror. Figure 13 shows the actual 
test set up. The laser light comes in from the left and passes through the microscope 
objective and pinhole at the left side of picture to the ground glass diffuser, which is seen 
as the green circle to the left of center. The honeycomb panel is mounted vertically at the 
back edge of the optical table. The skin of the panel consisted of two layers, a fiberglass 
underlayer that was bonded directly to the core, with a top layer of aluminum, which was 
bonded to the fiberglass and polished to a mirror surface. As seen in Figure 13, portions 
of the specular aluminum layer had been stripped away. The image of the diffuser, 
reflected by the specular surface, is the bright green spot (right of center), and the 
interferometer and camera appear in front of the diffuser image. 

Figure 13. Specular surface honeycomb panel test set up. The laser light comes in from 
the left md passes though the mjcroscope objective and pinhole (left side -of picture) to , . , 
the ground glass diffuser (green circle left of center). The honeycomb panel is mounted 
vertically at the back edge of the optical table, and the image of the diffuser, reflected by 
the specular surface, is the bright green spot (right of center), and the interferometer and 
camera appear in front of the diffuser image. Portions of the specular aluminum coating 
had been stripped away, revealing the fiberglass underlayer. 

(L , , 
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Ideally for non-destructive evaluation of these structures, it is desirable to have a positive 
verification that the structure is sound by identifying the characteristic honeycomb 
pattern in the differential displacement display. We were unable to obtain such a pattern; 
however, we were able to identify areas where large-scale bonding failures were readily 
apparent. In Figure 14, for example, the speckle fringe pattern indicates an area, roughly 
4 to 6 cm across, that was not bonded. This was verified by destructively cutting through 
the skin, where we found that the bonding between the fiberglass and the core had failed, 
although the aluminum to fiberglass bond appeared intact. 

The dfficulty in imaging the honeycomb pattern is apparently due to the very small cell 
size of the core (about 3 mm), with the double layer composition of the skin possibly a 
contributing factor. In order to see the surface deflection fringes at this cell size, the 
shear distance must be less than 1 mm, greatly reducing the sensitivity of the system. In 
addition, a fringe pattern of that scale tends to disappear in the speckle noise. It should 
be noted that these effects are not related to the method of imaging through the specular 
surface. This was demonstrated by the fact that very similar results were obtained when a 
standard shearography configuration was used to examine a portion of the panel where 
the specular layer had been stripped away, leaving the underlying diffuse fiberglass layer 
exposed. Our results indicate that the general principle of using the surface as a minor to 
image the speckles is valid approach, extending the applicability of shearography to a 
new class of objects that could not be handled with the traditional technique. 

It might be possible to get fringe resolution at the scale of the cell size by reconfiguring 
the imaging optics to magnify the apparent cell size in the image. This is most readily 
done with a longer focal length lens on the camera. It would probably be desirable to 
also increase the pixel count of the camera so that a larger area of the surface can be 
examined at a time, although this would not be necessary to demonstrate the suitability of 
shearography to this particular application. It should be pointed out that the double layer 
skin, particularly the stiffness of the aluminum layer combined with the small cell size, 
might also affect the ability to display a good pattern. 
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For the specular surface honeycomb panel, the technique of generating speckles with 
some other diffuse surface and imaging them through the mirror-like panel surface 
appears to be valid. This technique opens up the use of shearography to a new class of 
objects that could not have been examined using more traditional shearography 
configurations. The results obtained here are encouraging, but further development 
should be undertaken to demonstrate the general applicability of the technique and to 
establish a firm quantitative foundation. 

Regarding the application of shearography to the non-destructive evaluation of the 
particular homycomb pane!, it has been demonstrated that large scale bonding failures 
can be identified with the system as configured. However, to reduce the scale size that 
can be evaluated to match the honeycomb core cell size, the optical configuration should 
be modified to increase the image size of the surface under test. 
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Figure 14. Specular honeycomb panel with bonding failure. The fringes indicate large 
scale areas where the skin is not bonded to the core. The lighter gray area below the 
fringe pattern is thought to be a region of good bonding. 

5. Conclusions and Recommendations 

In the evaluation of tile bonds on the BAT mask, the system was able to pretty clearly 
identify the tiles that were poorly bonded and appears to be effective for non-destructive 
evaluation in that application. For the full size mask, however, a fixture would need to be 
constructed to hold the mask while the vibration is applied. Since the mask is quite large, 
it is unlikely that inspection could be conveniently done in a single pass. It would be 
necessary to examine the mask in a sequence of spots, which would probably be most 
easily done by moving the mask rather than the inspection system. Because of the 
inherent robustness of shearography measurements, this shouId not be difficult. There is 
no need for the system to be set up on an optical bench; only the camera and 
interferometer would need to be mounted together on a small rigid plate. 

‘Tk “ s p t  siid’ (t!~c aea  thrt cm be exzmined at one time) could be scale&up by using a -.- ,- ~ 

more powerful laser, particularly a pulsed laser as described below, and/or by allowing 
the camera to integrate over a longer time period. A system intended specifically for 
large area vibration analysis should incorporate a pulsed laser and eliminate the acousto- 
optic modulator, which would greatly increase the optical efficiency, with a 
corresponding increase in the spot size. 

. 
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